


Contents lists available at ScienceDirect

Journal of Solid State Chemistry



journal homepage: www.elsevier.com/locate/jssc

# Thermal decomposition behavior of the rare-earth ammonium sulfate $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$

### Tsukasa Nagai<sup>a,b</sup>, Shinji Tamura<sup>a</sup>, Nobuhito Imanaka<sup>a,\*</sup>

<sup>a</sup> Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan <sup>b</sup> Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472, Japan

### ARTICLE INFO

Article history: Received 23 January 2010 Received in revised form 22 April 2010 Accepted 25 April 2010 Available online 13 May 2010

Keywords: Rare-earth ammonium sulfate Ammonium sulfate Rare-earth sulfate Raman Infrared

### ABSTRACT

Rare-earth ammonium sulfate octahydrates of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  (R=Pr, Nd, Sm, and Eu) were synthesized by a wet process, and the stable temperature region for the anhydrous  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  form was clarified by thermogravimetry/differential thermal analysis, infrared, Raman, and electrical conductivity measurements. Detailed characterization of these double salts demonstrated that the thermal stability of anhydrous  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  is different between the Pr, Nd salts and the Sm, Eu salts, and the thermal decomposition behavior of these salts was quite different from the previous reports.

© 2010 Elsevier Inc. All rights reserved.

### 1. Introduction

In general, the physical properties of ammonium salts are similar to those of potassium and rubidium salts in terms of crystalline structure, molar volume, and solubility in water, because the ionic radius of the ammonium ion is close to that of potassium and rubidium ion. However, since the thermal stability of ammonium salts is significantly lower than that of these alkali metal salts, many ammonium salts decompose and ammonium ions in solids vaporize below 200 °C. In contrast, the double sulfate salts formed by ammonium ions (NH<sub>4</sub><sup>+</sup>) and trivalent metal ions ( $M^{3+}$ ), which are generally described as  $M_2(SO_4)_3 \cdot (NH_4)_2SO_4$ , have a high thermal stability compared to other ammonium salts, and the decomposition temperature of  $M_2(SO_4)_3 \cdot (NH_4)_2SO_4$  salts is between 300 and 400 °C [1–7].

Double sulfates such as ammonium alum and iron alum are generally obtained as the hydrate form of  $M_2(SO_4)_3 \cdot (NH_4)_2$ . SO<sub>4</sub>·*x*H<sub>2</sub>O (*x*=2–12). Although the anhydrate form of these salts, called burnt ammonium alum ( $M_2(SO_4)_3 \cdot (NH_4)_2SO_4$ ), can be obtained by vaporizing the crystallization water by the heat treatment above 300 °C, it is difficult to obtain the solid state form because of the low melting point ( $\leq 100$  °C) of  $M_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot xH_2O$  solids. Among these double sulfates containing ammonium ions, rare-earth ammonium sulfates,  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot xH_2O$  (R=rare-earth, x=2–8; this series can be presented to be (NH<sub>4</sub>)[ $R(SO_4)_2(H_2O)_3$ ]·(H<sub>2</sub>O) as a general metal complex presentation), are interesting materials in that they have no melting point and form the anhydrate at low temperatures [8,9]. While many investigations of their chemical or physical properties have been carried out [10–13], the thermal behavior of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot xH_2O$  was studied only by thermogravimetry/differential thermal analysis (TG-DTA).

In our previous work on a solid electrolyte type NH<sub>3</sub> gas sensor [14,15], we found that the sensor with rare-earth ammonium sulfate of anhydrous  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  (R=Pr, Nd), as the auxiliary sensing electrode had excellent NH<sub>3</sub> gas sensing performance at 230 °C, where the crystallization water in  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot xH_2O$  fully vaporized with no decomposition of the  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  solid. In this work, we found that the thermal stability of the  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  solids (R=Pr, Nd) differed from the values reported in the literature [9].

In this study, we clarified the stable temperature region for  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  solids (R=Pr, Nd, Sm, Eu), which were obtained from mixed aqueous solutions of equimolar amounts of rare-earth sulfate and ammonium sulfate, by TG-DTA, IR, and Raman analyses and electrical conductivity measurements.

### 2. Experimental

## 2.1. Preparation of rare-earth ammonium sulfate $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$

Rare-earth ammonium sulfate double salts of  $R_2(SO_4)_3 \cdot (NH_4)_{2-}$ SO<sub>4</sub> (*R*=Pr, Nd, Sm, Eu, Gd, Tb, Ho, Yb, Lu) were synthesized by a

<sup>\*</sup> Corresponding author. Fax: +81668797354.

E-mail address: imanaka@chem.eng.osaka-u.ac.jp (N. Imanaka).

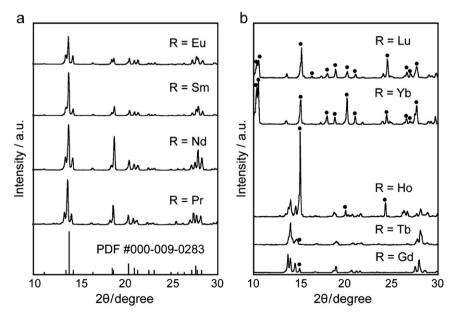
<sup>0022-4596/\$ -</sup> see front matter  $\circledcirc$  2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2010.04.038

wet process. Each rare-earth oxide was dissolved in  $3 \text{ mol} 1^{-1} \text{ HCl}$  solution at 100 °C, and then concentrated H<sub>2</sub>SO<sub>4</sub> (98%) was added into the HCl solution, in the proportion of 1 mol  $R^{3+}$  ion to 1.5 mol of SO<sub>4</sub><sup>2-</sup> ion, to produce  $R_2(SO_4)_3$ . After cooling the solution to room temperature,  $R_2(SO_4)_3$  precipitates were obtained by adding an excess amount of ethanol. The precipitate was washed with ethanol until both H<sup>+</sup> and Cl<sup>-</sup> ions were rinsed off. The  $R_2(SO_4)_3$  obtained was dried, and mixed with an equimolar amount of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, and then dissolved in water. By heating the solution at 60–100 °C to vaporize the water,  $R_2(SO_4)_3 \cdot (\text{NH}_4)_2\text{SO}_4 \cdot x\text{H}_2\text{O}$  was obtained.

### 2.2. Experimental techniques

X-ray powder diffraction patterns of the samples were obtained at room temperature using Ni filtered Cu-Ka radiation  $(\lambda = 1.54178 \text{ Å})$  in the  $2\theta$  range from  $10^{\circ}$  to  $30^{\circ}$  with steps of  $2^{\circ}$  or 0.02° (Multiflex, Rigaku). Thermal analysis (Thermogravimetric, TG and differential thermal analysis, DTA) was carried out (DTA-60H, Shimadzu) in a synthetic air atmosphere. The heating rates were 2 and 10 °C min<sup>-1</sup> for TG and DTA, respectively. A platinum crucible was used as a container and alumina was used as a reference material for DTA measurements. Infrared spectra were measured for the  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot xH_2O$  (*R*=Pr, Nd, Sm, Eu) solids, which were obtained by heating the  $R_2(SO_4)_3 \cdot (NH_4)_2$ . SO<sub>4</sub> · 8H<sub>2</sub>O powder at 120-260 °C for 10 h in air in the 4000-400 cm<sup>-1</sup> region (FT/IR-430, Jasco) by mixing dry KBr. Raman spectra in the range of  $1200-200 \text{ cm}^{-1}$  were investigated using a 532 nm laser as an excitation source (NRS-3100 spectrometer, Jasco). The sample powder of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  (R = Pr, Nd, Sm, Eu) for Raman analysis was obtained by heating the  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  powder at 220–340 °C for 10 h in air.

Electrical conductivity of the anhydrous  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$ (R=Pr, Nd, Sm, Eu) solids was measured by a complex impedance method at frequency of 5–13M Hz (Precision LCR meter 8284A, Hewlett Packard) at temperatures ranging from 50 to 350 °C. The anhydrate  $Pr_2(SO_4)_3 \cdot (NH_4)_2SO_4$  powder was obtained by heating  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  powder at 200 °C for 10 h in air. The resulting anhydrous  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  was formed into pellets and sintered at 200 °C (R=Pr, Nd) or 240 °C (R=Sm, Eu), for 10 h in air.


#### 3. Results and discussion

### 3.1. Synthesis of $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot xH_2O_3$

Fig. 1 depicts X-ray powder diffraction patterns (XRD) of the samples obtained from equimolar amounts of  $R_2(SO_4)_3$  (R=Pr, Nd, Sm, Eu, Gd, Tb, Ho, Yb, Lu) and  $(NH_4)_2SO_4$ . The structure of  $R_2(SO_4)_3 \cdot (NH_4)_2 SO_4 \cdot 8H_2O$ , whose space group of P21/c $(Nd_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O)$ : PDF #000-009-0283) was reported in the literature [10], is also shown. XRD measurements of these samples indicated that a single phase of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  was obtained from the R=Pr, Nd, Sm, and Eu samples. The X-ray powder data for the  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot xH_2O$  (R=Pr, Nd, Sm, Eu) solids are summarized in Table 1. The diffraction peaks of the  $R_2(SO_4)_3 \cdot (NH_4)_2 SO_4 \cdot 8H_2O$  phase shifted to higher angles with increasing atomic number of rare-earth elements because of the

**Table 1** X-ray powder data for  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  (*R*=Pr, Nd, Sm, Eu).

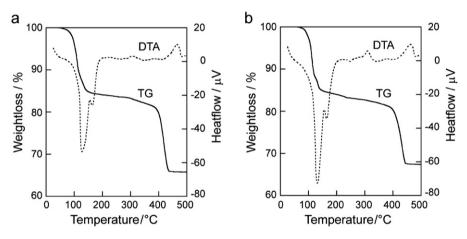
|       | Pr     |                  | Nd     |                  | Sm     |                  | Eu     |                  |
|-------|--------|------------------|--------|------------------|--------|------------------|--------|------------------|
| h k l | d (Å)  | I/I <sub>0</sub> |
| 011   | 7.8939 | 0.9              | 7.8376 | 1.6              | 7.8512 | 1.2              | 7.8885 | 1.6              |
| 100   | 6.5725 | 21.6             | 6.5158 | 28.2             | 6.4959 | 19.1             | 6.5058 | 33.4             |
| 021   | 6.3932 | 100.0            | 6.3653 | 100.0            | 6.3571 | 100.0            | 6.3752 | 100.0            |
| 110   | 6.2066 | 15.6             | 6.1636 | 26.7             | 6.1462 | 15.2             | 6.1551 | 30.4             |
| -120  | 5.3950 | 2.6              | 5.3680 | 4.5              | 5.3547 | 2.7              | 5.3554 | 5.8              |
| -121  | 4.8080 | 7.3              | 4.7864 | 10.5             | 4.7662 | 7.4              | 4.7712 | 17.9             |
| 040   | 4.7260 | 40.9             | 4.7057 | 74.3             | 4.7012 | 21.6             | 4.7114 | 21.8             |
| 002   | 4.3540 | 21.4             | 4.3369 | 21.5             | 4.3283 | 12.1             | 4.3291 | 20.6             |
| 012   | 4.2394 | 9.4              | 4.2231 | 12.9             | 4.2184 | 8.8              | 4.2190 | 14.9             |
| -131  | 4.1566 | 7.3              | 4.1484 | 10.7             | 4.1374 | 7.2              | 4.1449 | 16.3             |
| 022   | 3.9522 | 4.4              | 3.9409 | 4.6              | -      | -                | 3.9345 | 4.8              |
| -140  | 3.8504 | 2.9              | 3.8307 | 3.4              | -      | -                | 3.8208 | 6.3              |
| -122  | 3.5784 | 1.1              | 3.5587 | 1.7              | 3.5422 | 1.0              | 3.5372 | 2.3              |
| 102   | 3.4791 | 3.6              | 3.4556 | 2.8              | 3.4551 | 1.5              | 3.4579 | 2.6              |
| 112   | 3.3860 | 2.4              | 3.3709 | 3.6              | 3.3637 | 1.8              | 3.3703 | 4.9              |
| -132  | 3.2899 | 9.9              | 3.2713 | 11.4             | 3.2594 | 6.5              | 3.2615 | 16.6             |
| -210  | 3.2452 | 20.8             | 3.2291 | 17.0             | 3.2131 | 14.6             | 3.2088 | 28.0             |
| 042   | 3.2043 | 21.0             | 3.1889 | 43.9             | 3.1883 | 21.5             | -      | -                |
| 060   | 3.1554 | 14.9             | 3.1445 | 27.9             | 3.1358 | 10.2             | 3.1336 | 13.9             |



**Fig. 1.** X-ray powder diffraction patterns of the sample obtained from an equimolar mixture of  $R_2(SO_4)_3$  and  $(NH_4)_2SO_4$  (R=Pr, Nd, Sm, Eu, Gd, Tb, Ho, Yb, Lu). The closed circles ( $\bullet$ ) represent the diffraction peak of the rare-earth sulfate hydrate of  $R_2(SO_4)_3 \cdot nH_2O$ .

lanthanide contraction. On the other hand, a secondary phase of  $R_2(SO_4)_3 \cdot xH_2O$  (x=3-8) was observed in addition to  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  for R=Gd, Tb, and Ho samples. Moreover, for R=Yb and Lu, the main phase of the compounds was  $R_2(SO_4)_3 \cdot xH_2O$ , although the  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  phase also appeared. Therefore, the single phase of the  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot xH_2O$  double salt could be obtained only for Pr, Nd, Sm, and Eu from an equimolar mixture of  $R_2(SO_4)_3$  and  $(NH_4)_2SO_4 \cdot xH_2O$  can be obtained for R=Pr, Nd, Sm, and Eu.

### 3.2. Thermal analysis of $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$ (R=Pr, Nd, Sm, and Eu)


To investigate the stable temperature region for anhydrous  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$ , thermogravimetric analysis (TG) and differential thermal analysis (DTA) were measured with heating rates of 2 and 10 °C min<sup>-1</sup> respectively. Fig. 2 shows the thermal analysis results for (a)  $Pr_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  and (b)  $Sm_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  solids. Table 2 summarizes the detailed TG-DTA results for  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  (R=Pr, Nd, Sm, and Eu).

Although the weight lost, which suggested the dehydration of crystallization water, corresponded well with the theoretical estimates based on the stoichiometry of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  (16–17%), the dehydration nature of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  salt was found to be markedly different between the Pr, Nd salts and the Sm, Eu salts. For Pr<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> · (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> · 8H<sub>2</sub>O and Nd<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> · (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> · 8H<sub>2</sub>O solids (Fig. 2a), a two-step weight loss (ca. 17%; the first weight loss was ca. 13% and second one was ca. 4%) accompanied by large endothermic peaks, which coincides well with the total amount of crystallization water, 8H<sub>2</sub>O (ca. 17%), was clearly observed at temperatures between 75 and 180 °C. Therefore, the dehydration process of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  (R=Pr, Nd) compounds can be presented as

$$R_2(SO_4)_3 \cdot (NH_4)_2 SO_4 \cdot 8H_2 O \rightarrow R_2(SO_4)_3 \cdot (NH_4)_2 SO_4 \cdot 2H_2 O + 6H_2 O \uparrow, (1)$$

$$R_{2}(SO_{4})_{3} \cdot (NH_{4})_{2}SO_{4} \cdot 2H_{2}O \to R_{2}(SO_{4})_{3} \cdot (NH_{4})_{2}SO_{4} + 2H_{2}O\uparrow.$$
(2)

In contrast, the Sm<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>·(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>·8H<sub>2</sub>O and Eu<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>·(NH<sub>4</sub>)<sub>2</sub>-SO<sub>4</sub>·8H<sub>2</sub>O solids (Fig. 2b) have a two-step weight loss (ca. 15%) with large endothermic peaks, the amount corresponds to seven water molecules at temperatures of 80–140 °C, and gradual weight loss corresponding to one water molecule (ca. 2%) was observed between



**Fig. 2.** TG-DTA results of the  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  solids: (a) R = Pr and (b) R = Sm.

### Table 2

TG-DTA results of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  (R=Pr, Nd, Sm, Eu).

| R  | Temperature (°C) | Measurement     |                 | Theoretical     |                                                   |  |
|----|------------------|-----------------|-----------------|-----------------|---------------------------------------------------|--|
|    |                  | Weight loss (%) | Number of moles | Weight loss (%) | Number of moles                                   |  |
| Pr | 75.0–146.0       | 13.1            | 6H20            | 12.8            | 6H <sub>2</sub> O                                 |  |
|    | 146.0–175.0      | 4.6             | 2H20            | 4.3             | 2H <sub>2</sub> O                                 |  |
|    | 301.3 (+)        | -               | -               | -               | -                                                 |  |
|    | 272.0–475.0      | 16.4            | 1 (NH4)2SO4     | 15.6            | 1 (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> |  |
| Nd | 79.0–151.5       | 12.8            | 6H2O            | 12.7            | 6H <sub>2</sub> O                                 |  |
|    | 151.5–179.0      | 4.1             | 2H2O            | 4.2             | 2H <sub>2</sub> O                                 |  |
|    | 308.2 (+)        | -               | -               | -               | -                                                 |  |
|    | 274.5–478.5      | 16.7            | 1 (NH4)2SO4     | 15.5            | 1 (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> |  |
| Sm | 79.8–126.5       | 12.3            | 6H20            | 12.5            | 6H <sub>2</sub> O                                 |  |
|    | 126.5–140.5      | 2.3             | 1H20            | 2.1             | 1H <sub>2</sub> O                                 |  |
|    | 140.5–240.5      | 2.2             | 1H20            | 2.1             | 1H <sub>2</sub> O                                 |  |
|    | 310.4 (+)        | -               | -               | -               | -                                                 |  |
|    | 290.5–447.5      | 15.6            | 1 (NH4)2SO4     | 15.3            | 1 (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> |  |
| Eu | 83.5–120.4       | 12.4            | 6H20            | 12.5            | 6H <sub>2</sub> O                                 |  |
|    | 120.4–135.3      | 2.4             | 1H20            | 2.1             | 1H <sub>2</sub> O                                 |  |
|    | 135.3–235.5      | 2.1             | 1H20            | 2.1             | 1H <sub>2</sub> O                                 |  |
|    | 313.1 (+)        | -               | -               | -               | -                                                 |  |
|    | 292.5–448.5      | 16.3            | 1 (NH4)2SO4     | 15.2            | 1 (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> |  |

140 and 240 °C. Therefore, the dehydration behavior of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  (R=Sm, Eu) compounds is found to be:

$$R_{2}(SO_{4})_{3} \cdot (NH_{4})_{2}SO_{4} \cdot 8H_{2}O \rightarrow R_{2}(SO_{4})_{3} \cdot (NH_{4})_{2}SO_{4} \cdot 2H_{2}O + 6H_{2}O\uparrow, (3)$$

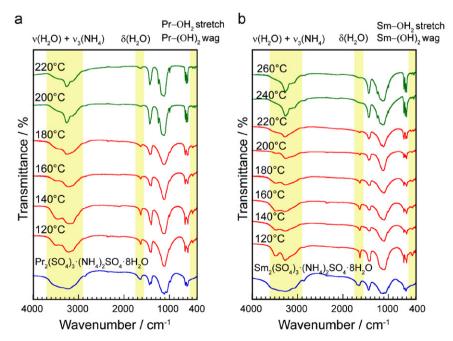
$$R_{2}(SO_{4})_{3} \cdot (NH_{4})_{2}SO_{4} \cdot 2H_{2}O \to R_{2}(SO_{4})_{3} \cdot (NH_{4})_{2}SO_{4} \cdot H_{2}O + H_{2}O\uparrow, \quad (4)$$

$$R_2(SO_4)_3 \cdot (NH_4)_2 SO_4 \cdot H_2 O \rightarrow R_2(SO_4)_3 \cdot (NH_4)_2 SO_4 + H_2 O \uparrow.$$
(5)

Furthermore, a drastic weight loss suggesting the vaporization of  $(NH_4)_2SO_4$  was observed around 400 °C for both groups (R=Pr, Nd and R=Sm, Eu solids). However, since exothermic peaks were observed in the temperature range of 300–320 °C, anhydrous  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  decomposes to  $R_2(SO_4)_3$  and  $(NH_4)_2SO_4$ , as suggested by previous reports [9]. Therefore,  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  (R=Pr, Nd, Sm, Eu) solids should fully decompose at approximately 300 °C.

### 3.3. Infrared spectra of $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot xH_2O$

To determine the temperature at which the crystallization water vaporizes completely, infrared measurements were taken for  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot xH_2O$  (R=Pr, Nd, Sm, Eu) by heating the  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot xH_2O$  solids at 120–260 °C for 10 h. Fig. 3 shows IR spectra of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot xH_2O$  solids (R=Pr (a), Sm (b)). The typical absorption frequencies observed for  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  salt are also tabulated in Table 3. For all solids, a sharp band at 1640 cm<sup>-1</sup> for the H–O–H bend and an intense broad band extending from 3600 to 3000 cm<sup>-1</sup> for the stretching mode of H<sub>2</sub>O was clearly observed. Furthermore, the presence of R–OH<sub>2</sub> stretching (430 cm<sup>-1</sup>) and R–(OH)<sub>2</sub> wagging (485 cm<sup>-1</sup>) bands indicated that the water molecules were coordinated to the rare-earth ions (although these bands overlapped the  $v_2$  vibrations of the sulfate group (SO<sub>4</sub>)).


When the sulfate group (SO<sub>4</sub>) coordinates to another element in the structure, the high symmetry of SO<sub>4</sub> ( $T_d$ ) should be lowered to  $C_{3v}$  (unidentate) or  $C_{2v}$  (bidentate or bridged). For  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  salts, absorption bands were observed at 1200–1030 cm<sup>-1</sup>, suggesting that a bridging bidentate sulfate group exists in the structure. Furthermore, the absence of the combination of asymmetric bending ( $v_4$ ) and intermolecular vibration ( $v_6$ ) bands (around 2000 cm<sup>-1</sup>) for the ammonium ion indicates that the ammonium ion may have a free rotation in the structure [13,16]. Since all  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  (R=Pr, Nd, Sm, Eu) solids had similar spectra based on the bands derived from the existence of H<sub>2</sub>O, SO<sub>4</sub>, NH<sub>4</sub>, and the rare-earths, the IR results also indicate that all of the  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$ (R=Pr, Nd, Sm, Eu) solids had similar structure.

In the IR spectra of  $Pr_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot xH_2O$  solids, which were obtained by heating  $Pr_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  solid at 120–180 °C, the peaks derived from the bonds of  $H_2O$  (highlighted

### Table 3

Infrared absorption frequencies in the 4000–400 cm<sup>-1</sup> range for  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  (R=Pr, Nd, Sm, Eu).

| Assignment                                                | Observed frequencies (cm <sup>-1</sup> ) |                      |                      |                      |  |  |
|-----------------------------------------------------------|------------------------------------------|----------------------|----------------------|----------------------|--|--|
|                                                           | Pr                                       | Nd                   | Sm                   | Eu                   |  |  |
| v (H <sub>2</sub> O)<br>v <sub>3</sub> (NH <sub>4</sub> ) | 3510<br>3252                             | 3550<br>3258         | 3505<br>3263         | 3525<br>3256         |  |  |
| δ (H <sub>2</sub> O)<br>ν <sub>4</sub> (NH <sub>4</sub> ) | 1641<br>1437                             | 1677<br>1437         | 1636<br>1436         | 1637<br>1435         |  |  |
| v <sub>3</sub> (SO <sub>4</sub> )                         | 1146<br>1112<br>1063                     | 1154<br>1113<br>1069 | 1147<br>1116<br>1069 | 1146<br>1122<br>1072 |  |  |
| v <sub>1</sub> (SO <sub>4</sub> )                         | 988                                      | 990                  | 991                  | 992                  |  |  |
| v4 (SO4)                                                  | 650<br>616                               | 652<br>617           | 653<br>617           | 653<br>617           |  |  |
| $v_2$ (SO <sub>4</sub> )+ $R$ -(OH) wagging               | 481                                      | 482                  | 485                  | 483                  |  |  |
| <i>R</i> –OH <sub>2</sub> stretch                         | 430                                      | 429                  | 436                  | 431                  |  |  |



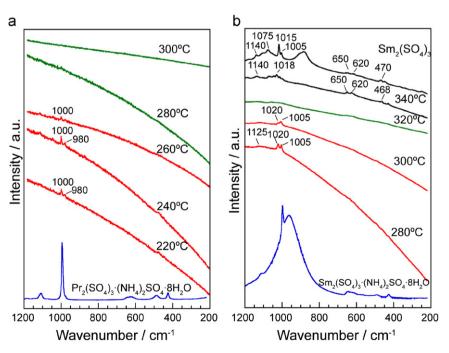
**Fig. 3.** IR measurement results of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot xH_2O$  obtained by heating  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  solids at 120–260 °C for 10 h (R=Pr (a), R=Sm (b)). The IR spectra of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  is also depicted for comparison.

in Fig. 3) weakened with increasing temperature, suggesting the vaporization of crystallization water. Furthermore, no meaningful absorption bands implying the existence of H<sub>2</sub>O were observed in samples heated above 200 °C, although the band observed around 3600–3000 cm<sup>-1</sup> remained because the  $v_4$  band of NH<sub>4</sub> exists around 3250 cm<sup>-1</sup>. From these results, the temperature at which the crystallization water in the Pr<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> · (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> · 8H<sub>2</sub>O solid completely vaporizes was determined to be 180–200 °C, which corresponds well with the TG-DTA results. A quite similar dehydration behavior was also observed for Nd<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> · (NH<sub>4</sub>)<sub>2</sub>-SO<sub>4</sub> · xH<sub>2</sub>O.

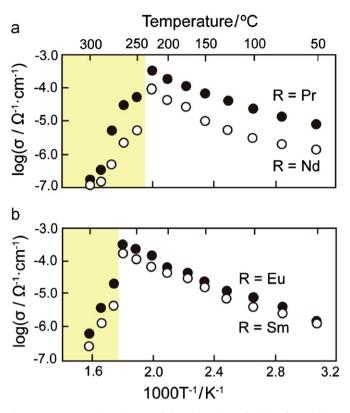
Similarly, the temperature at which the crystallization water in  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  (R=Sm, Eu) completely vaporizes was found to be 220–240 °C. In the TG-DTA results for the double salt of R=Sm, Eu (Fig. 1b), gradual weight loss suggesting the vaporization of one water molecule was observed between 145 and 240 °C. Since the IR results strongly support the TG-DTA data, the dehydration behavior of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  (R=Sm, Eu) was also clarified.

### 3.4. Raman spectrometry of anhydrous $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$

To determine the stable temperature region for anhydrous  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  double salt, Raman measurements were carried out for anhydrous  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  solids which were obtained by heating  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  solids at 220-340 °C for 10 h. Fig. 4 shows the Raman spectra of anhydrous  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  solids (R=Pr (a), Sm (b)), with the corresponding spectra of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  and  $R_2(SO_4)_3$ . The Raman data and assignments for  $(NH_4)_2SO_4$ .  $R_2(SO_4)_3$  (R=Pr, Nd, Sm, Eu) are given in Table 4. The normal vibrations of tetrahedral SO<sub>4</sub> should be observed at frequencies of 981, 451, 1104, and  $613 \text{ cm}^{-1}$  for  $v_1$ ,  $v_2$ ,  $v_3$ , and  $v_4$  modes, respectively. For all  $R_2(SO_4)_3 \cdot (NH_4)_2 SO_4 \cdot 8H_2O$  double salts, Raman peaks derived from SO<sub>4</sub> bonds were confirmed, and included the bands of symmetric vibration of  $SO_4$  ( $v_1$ )  $(965-1000 \text{ cm}^{-1})$ , symmetric deformation vibration  $(v_2)$  (420-490 cm<sup>-1</sup>), asymmetric stretch  $(v_3)$  (1100–1150 cm<sup>-1</sup>), and asymmetric bending  $(v_4)$  (610–645 cm<sup>-1</sup>). For Pr<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>.


 $(NH_4)_2SO_4$  solid (Fig. 4a) heated at 220–260 °C, the *S/N* ratio of the spectra decreased with increasing temperature, and the intensity of the peak assigned to  $SO_4$  decreased. Furthermore, Raman peaks derived from  $SO_4$  in the double salt disappeared at 280 °C, indicating that the  $Pr_2(SO_4)_3 \cdot (NH_4)_2SO_4$  had completely decomposed. Although the Raman spectra for the samples heated up to 280 °C are noisy, the sample completely decomposed to the  $R_2(SO_4)_3$  has no meaningful noise in a spectrum. The reason why the spectra for the samples heated between 220 and 280 °C are noisy is considered to be due to the dehydration of the sample, suggesting the lower structural stability compared to the hydrated sample.

Similar behavior was observed for  $\text{Sm}_2(\text{SO}_4)_3 \cdot (\text{NH}_4)_2\text{SO}_4$ . Although bands suggesting the existence of  $\text{SO}_4$  units in the anhydrous  $\text{Sm}_2(\text{SO}_4)_3 \cdot (\text{NH}_4)_2\text{SO}_4$  were observed at 280–300 °C, bands assigned to  $\text{Sm}_2(\text{SO}_4)_3$  appeared for the samples heated above 320 °C. The appearance of  $\text{Sm}_2(\text{SO}_4)_3$  indicates that  $\text{Sm}_2(\text{SO}_4)_3 \cdot (\text{NH}_4)_2\text{SO}_4$  decomposes to  $\text{Sm}_2(\text{SO}_4)_3$  and  $(\text{NH}_4)_2\text{SO}_4$ . These Raman measurement results for  $R_2(\text{SO}_4)_3 \cdot (\text{NH}_4)_2\text{SO}_4$  at elevated temperatures are well consistent with the gradual weight loss around 300 °C observed in the thermal analysis (Fig. 2).

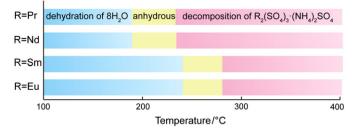

Table 4

Raman spectral data and assignments for  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  (*R*=Pr, Nd, Sm, Eu).

| Assignment                        | Observed frequencies (cm <sup>-1</sup> ) |            |            |            |  |  |
|-----------------------------------|------------------------------------------|------------|------------|------------|--|--|
|                                   | Pr                                       | Nd         | Sm         | Eu         |  |  |
| v <sub>2</sub> (SO <sub>4</sub> ) | 425<br>487                               | 423<br>486 | 425<br>488 | 425<br>452 |  |  |
| v <sub>4</sub> (SO <sub>4</sub> ) | 619<br>633                               | 612<br>635 | 618<br>640 | 615<br>642 |  |  |
| v <sub>1</sub> (SO <sub>4</sub> ) | 994                                      | 975<br>993 | 965<br>995 | 998<br>977 |  |  |
| v <sub>3</sub> (SO <sub>4</sub> ) | 1108<br>1150                             | 1109       | 1114       | 1119       |  |  |



**Fig. 4.** Raman spectra of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  obtained by heating  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  solids at 220–340 °C for 10 h (R=Pr (a), R=Sm (b)). The Raman spectra of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  and  $R_2(SO_4)_2 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  and  $R_2(SO_4)_2 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  and  $R_2(SO_4)$ 




**Fig. 5.** Temperature dependences of the electrical conductivity for anhydrate  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  solids: (a) R=Pr, Nd and (b) R=Sm, Eu.

### 3.5. Electrical conductivity of rare-earth ammonium sulfate $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$

Since the electrical conductivity of rare-earth ammonium sulfate should change with the decomposition of  $R_2(SO_4)_3 \cdot (NH_4)_2 SO_4$ , we measured the electrical conductivities of anhydrous  $R_2(SO_4)_3 \cdot (NH_4)_2 SO_4$  (R; Pr, Nd, Sm, Eu) solids, which were obtained by heating  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4 \cdot 8H_2O$  solids at 200 °C (R=Pr, Nd) and 240 °C (R=Sm, Eu) for 10 h. Fig. 5 shows the temperature dependences of the electrical conductivity for the anhydrous  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  in the temperature range from 50 to 350 °C. For the R = Pr, Nd salt, the conductivity monotonically increased with increasing temperature up to 230 °C. However, the conductivity of the  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  solids decreased rapidly above 250 °C. Similarly, the conductivity of Sm, Eu salts also increases with increasing temperature, and then decreased above 300 °C. These results are consistent with the estimated temperature where  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  decomposes to  $R_2(SO_4)_3$ and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>. Since the electrical conductivity change during heating reflects the thermal decomposition of the sample, the  $R_2(SO_4)_3 \cdot (NH_4)_2 SO_4$  solids may begin to decompose into  $R_2(SO_4)_3$ and  $(NH_4)_2SO_4$  at 250 and 300 °C for R=Pr, Nd and R=Sm, Eu, respectively.

The thermally stable temperature region for anhydrous  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  estimated from TG-DTA, IR, Raman, and electrical conductivity measurements are summarized in Fig. 6.



**Fig. 6.** Stable temperature region for anhydrous  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  (R=Rr, Nd, Sm, Eu).

The thermal stabilities of anhydrous  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  are quite different from those reported in the literature, which were obtained from only TG-DTA (Pr: 193–375 °C, Nd: 190–360 °C, Sm: 190–333 °C, Eu: 230–342 °C) [9].

### 4. Conclusions

We have clarified the stable temperature range of anhydrous rare-earth ammonium sulfate  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  double salts, which we expect to be utilized as a practical solid-state material. Among the series  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$ , the single phases of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  were obtained for samples with R=Pr, Nd, Sm, and Eu. Detailed characterization of these double salts indicated that the thermal stability of anhydrous  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  is different between (Pr, Nd) and (Sm, Eu). Since the previous reports were based only on thermal analysis, the present work has more accurately determined the exact thermal stability of  $R_2(SO_4)_3 \cdot (NH_4)_2SO_4$  solids.

### Acknowledgment

This work has been supported in part by Grant-in-Aid for JSPS Fellows (No. 21671) from the Japan Society for the Promotion of Science.

#### References

- [1] T. Sato, F. Ozawa, S. Ikoma, J. Appl. Chem. Biotechnol. 28 (1978) 811-822.
- [2] J.P. Pizzolato, H.A. Papazian, J. Am. Ceram. Soc. 53 (1970) 289-290.
- [3] H. Bassett, T.H. Goodwin, J. Chem. Soc. (1949) 2239-2279.
- [4] L. Campbell, S. Debenedetti, Phys. Lett. 20 (1966) 103-105.
- [5] V.M. Petrugevski, W.F. Sherman, J. Molec. Struct. 294 (1993) 171-176.
- [6] B.V.R. Chowdaiu, J. Phys. Chem. Solids 30 (1969) 2747-2757.
- [7] M.E. Garcia-Clavel, M.P. Servert-Buxados, Thermochim. Acta 144 (1989) 65–73.
- [8] A.P. Belousova, I.V. Shakhno, V.E. Plyushchev, Russ. J. Inorg. Chem. 15 (1970) 116–120.
- [9] L.D. Iskhakova, I.E. Sukhova, O.P. Chernova, I.V. Shakhno, V.E. Plyushchev, Russ. J. Inorg. Chem. 20 (1975) 193–196.
- [10] E. Staritzky, D.T. Cromer, Anal. Chem. (1956) 554-555.
- [11] P.N. Iyer, P.R. Natarajan, J. Less-Common Met. 146 (1989) 161-166.
- [12] B. Erikson, L.O. Larsson, L. Ninisto, U. Skoglund, Inorg. Chem. 13 (1974) 290-295.
- [13] P.N. Iyer, P.R. Natarajan, Thermochim. Acta 210 (1992) 185-192.
- [14] T. Nagai, S. Tamura, N. Imanaka, Sens. Lett. 6 (2008) 454–457.
- [15] T. Nagai, S. Tamura, N. Imanaka, ECS Trans. 16 (11) (2008) 257-264.
- [16] C. Postmus, J.R. Ferraro, J. Chem. Phys. 48 (1967) 3605–3610.